

PHOTOVOLTAIK-POTENZIALANALYSE KOMMUNE EDINGEN-NECKARHAUSEN

Bearbeiter:

Alain Eicher, M.Sc.

AutenSys GmbH

Erstellungszeitraum:

Mai 2022 - Juni 2022

Inhalt

1.	Autga	abenstellung und Vorgehensweise	4
	1.1	Vorgehensweise	4
		1.1.1 Auf-Dach-Potenzialanalyse	4
		1.1.2 Freiflächen-Potenzialanalyse	4
	1.2	Standorte	4
2.	Ausg	gangssituation	6
	2.1	Datenerfassung	6
		2.1.1 Auf-Dach-Potenzialanalyse	6
		2.1.2 Freiflächen-Potenzialanalyse	6
	2.2	Energiewirtschaftliche Rahmenbedingungen	6
		2.2.1 Auf-Dach-Potenzialanalyse	7
		2.2.2 Freiflächen-Potenzialanalyse	
	2.3	Sonstiges	8
		2.3.1 Geoinformationssystem	
		2.3.2 Kostenentwicklung	9
		2.3.3 Gesetzliche Entwicklungen	
		2.3.4 Genauigkeit	9
3.	Phot	ovoltaik-Potenzial	10
	3.1	Bewertungskriterien	10
		3.1.1 Auf-Dach-Potenzialanalyse	
		3.1.2 Freiflächen-Potenzialanalyse	11
	3.2	Ergebnis	
		3.2.1 Auf-Dach-Potenzial	11
		3.2.2 Freiflächen-Potenzial	12
4.	Anha	ang	16
	4.1	Auf-Dach-Potenziale	16
		4.1.1 Graf-von-Obendorf-Schule	16
		4.1.2 Pestalozzi-Schule	17
		4.1.3 Begegnungsstätte	18
		4.1.4 Leichenhalle Friedhofweg	19
		4.1.5 Feuerwehr	20
		4.1.6 Bauhof	21
		4.1.7 Freizeitbad	22
		4.1.8 Wohnhaus Hauptstr. 41	23
		4.1.9 Rathaus	24
		4.1.10 Sporthaus	25
		4.1.11 Gebäude Verwaltung Schule	26
		4.1.12 Wohnhaus Rathaus Str. 5	27
		4.1.13 Wohnhaus Seckenheimer Str. 2A	29
		4.1.14 Wohnhaus Seckenheimer Str. 2b	30
		4.1.15 Leichenhalle Speyerer Str.	31
		4.1.16 Aufenthaltsraum	32

4.2 Freifläche	en-Potenziale	34
	Eigentum von Edingen-Neckarhausen, innerhalb des EEG, hne Restriktionen	34
	Eigentum von Edingen-Neckarhausen, innerhalb des EEG, nit Restriktionen	35
	Eigentum von Edingen-Neckarhausen, außerhalb des EEG, hne Restriktionen	36
	Eigentum von Edingen-Neckarhausen, außerhalb des EEG, nit Restriktionen	37
	abhängig Eigentümerverhältnisse, innerhalb des EEG, hne Restriktionen	38
	Eigentum von Edingen-Neckarhausen, innerhalb des EEG, nit Restriktionen	39

1. AUFGABENSTELLUNG UND VORGEHENSWEISE

Für die Dächer von 30 kommunale Liegenschaften der Kommune Edingen-Neckarhausen hat die AutenSys GmbH das Potenzial von Leistung und Ertrag für Photovoltaik (PV) ermittelt. Dieses wurde anschließend anhand diverser Kriterien bewertet. Darüber hinaus wurde das Potenzial für Freiflächen-PV auf der Gemeindegemarkung ermittelt und ebenfalls bewertet. So erhält die Gemeinde Edingen-Neckarhausen einen ganzheitlichen Überblick, was sie als Gemeinde hinsichtlich PV angehen kann.

1.1 Vorgehensweise

Das Vorgehen gliedert sich in die zwei separaten Analysen Auf-Dach- und Freiflächen-Potenzial.

1.1.1 Auf-Dach-Potenzialanalyse

Für jede der kommunalen Liegenschaften wurde eine mögliche Dachbelegung mit PV-Modulen erarbeitet. Auf dieser Basis wurde die installierte Leistung ermittelt. Zusammen mit den Daten des Deutschen Wetterdienstes konnte davon der mögliche Ertrag abgeleitet werden.

Im Anschluss daran wurden die kommunalen Liegenschaften objektiv anhand verschiedener Kriterien bewertet.

1.1.2 Freiflächen-Potenzialanalyse

Die Potenzialanalysen der Freiflächen wurde mit Hilfe eines Geoinformationssystems (GIS) durchgeführt. Dabei wurden zuerst die verschiedenen, bspw. Wald, Naturpark, Wohngebiet, zusammengestellt. Im nächsten Schritt wurde für die einzelnen Gebiete untersucht, ob infrastrukturelle oder genehmigungsrechtliche Restriktionen vorliegen, die den Bau von PV-Anlagen verhindern oder einschränken könnten. Idealerweise liegen keine Restriktionen vor. Parallel wurde ermittelt, welche Flächen im Rahmen des Erneuerbaren Energien Gesetz (EEG) 2021 mit PV belegt werden dürfen. Anschließend wurde ermittelt, welche landwirtschaftlichen Flächen sich im Eigentum der Kommune befinden. Darauf aufbauend wurden die Ergebnisse dieser beiden Betrachtungen miteinander verknüpft. Dadurch ist erkennbar, welche Flächen mit PV belegt werden können. Für diese Flächen wurden abschließend die möglichen PV-Erträge ermittelt.

1.2 Standorte

Im Rahmen der Auf-Dach-Potenzialanalyse wurden 30 Liegenschaften aus Tab. 1 betrachtet.

Tabelle 1: In der Auf-Dach-Potenzialanalyse berücksichtigte kommunale Liegenschaften

Nr.	Name	Straße	Hausnr.	Stromverbrauch [kWh]
1	Graf-von-Oberndorff-Schule	Schulstraße	6	325.002
2	Pestalozzi-Schule	Robert-Walter-Str.	3	145.628
3	Treppenhaus	Am Neckardamm	23	596
4	Aufenthaltsraum	Am Schloßpark	-	4.699
5	Allgemeinstrom	Anna-Bender-Str.	12	1.216

6	Abwasserpumpwerk	Eichendorffstr.	2	0
7	Begegnungsstätte	Fichtenstr.	13	3.205
8	Leichenhalle	Friedhofweg	17	2.796
9	Feuerwehr	Gartenstr.	12	14.055
10	Gde.Verwaltung (ET), Gewächshaus	Grenzhöfer Str.	95	1.463
11	Gde. Verwaltung - Allg. Anl	Grenzhöfer Str.	95	572
12	Bauhof (Lager)	Grenzhöfer Str.	95	20.568
13	Asylwohnung	Grenzhöfer Str.	95	10.294
14	Allgemeinstrom	Hauptstr.	35	881
15	Freizeitbad	Hauptstr.	356	1.720
16	Festanschluss am Hallenbad	Hauptstr.	356	89
17	Schloss Neckarhausen	Hauptstr.	389	46.515
18	Treppenhaus	Hauptstr.	39	74
19	Hauptstr. 41 (ehem. Heimatbund)	Hauptstr.	41	288
20	Allg. Anlage	Hauptstr.	41	506
21	Rathaus	Hauptstr.	60	75.540
22	Flutlicht	Mannheimer Str.	50	234
23	Sporthaus	Mannheimer Str.	50	8.457
24	Flutlicht	Mannheimer Str.	50	7.431
25	Gde.Verw. Schule(Alt)	Rathausstr.	12	12.349
26	Wohnhaus	Rathausstr.	5	3.701
27	Wohnhaus	Seckenheimer Str.	2 A	97
28	Wohnhaus	Seckenheimer Str.	2 B	104
29	Leichenhalle	Speyerer Str.	5	4.497
31	Leichenhalle Friedhof Neckarhausen	Speyerer Str.	5	13.152

Aufgrund von Denkmalschutz, nicht vorhandener Adressen oder Standorten auf denen eine Installation von PV-Modulen nicht möglich ist, konnten einige Positionen aus Tab. 1 nicht detailliert untersucht werden. Diese sind gelb markiert. Zusätzlich wurden gleiche Adressen in einen Standort zusammengefasst.

Für die Freiflächen-Potenzialanalyse wurde das gesamte Gemarkungsgebiet von Edingen-Neckarhausen berücksichtigt.

2. AUSGANGSSITUATION

Für die Standorte aus Kap. 1.2 wurden sämtliche relevante Daten erfasst und Rücksprache mit den Ansprechpartnern der Gemeinde gehalten. Neben den spezifischen Standorteigenschaften sind insbesondere die energiewirtschaftlichen Rahmenbedingungen zu beachten.

2.1 Datenerfassung

Da sich das Vorgehen und damit die benötigten Daten für die Potenzialanalyse hinsichtlich der kommunalen Liegenschaften und der Freiflächen unterscheiden, erfolgte auch die Datenerfassung entsprechend angepasst.

2.1.1 Auf-Dach-Potenzialanalyse

Im Rahmen der Datenerfassung für die Auf-Dach-Potenzialanalyse hat die AutenSys GmbH folgende, von der Kommune Edingen-Neckarhausen zur Verfügung gestellten Informationen erfasst und ausgewertet:

- Adressen, Luftbilder, Dacharten und Nutzflächen der betreffenden Standorte
- Stromverbräuche und -kosten der betreffenden Standorte

2.1.2 Freiflächen-Potenzialanalyse

Im Rahmen der Datenerfassung für die Freiflächen-Potenzialanalyse hat die AutenSys GmbH folgende, von der Kommune Edingen-Neckarhausen zur Verfügung gestellten Informationen erfasst und ausgewertet:

Amtlichen Liegenschaftskataster Informationssystems (ALKIS)

Darüber hinaus hat die AutenSys GmbH folgende Datenquellen verwendet und mit den ALKIS-Daten der Kommune verknüpft:

- Wirtschaftsfunktionenkarte¹
- Kartenmaterial des Energieatlas Baden-Württemberg²
- Kartenmaterial OpenStreetMap (OSM)³

2.2 Energiewirtschaftliche Rahmenbedingungen

In Deutschland wird auf Basis des Erneuerbaren Energien Gesetz (EEG) 2021 der Ausbau der Erneuerbaren Energien (EE) verfolgt. Um den Ausbau der EE in Deutschland zu fördern, wird im EEG allen EE-Anlagen das Recht zu einem Anschluss an das Stromnetz gewährt. Darüber hinaus regelt das EEG die Vergütungspflichten. Bis zur Novellierung des EEG im Jahr 2022 hat es außerdem die

_

¹ https://lel.landwirtschaft-bw.de/pb/,Lde/Startseite/Unsere+Themen/Die+Wirtschaftsfunktionenkarte

² https://udo.lubw.baden-wuerttemberg.de/projekte/

³ https://download.geofabrik.de/

Zahlungspflichten der EEG-Umlage geregelt, welche zur Finanzierung der Vergütungen genutzt wurde.

Damit haben EE-Anlagen wie PV-Anlagen Anspruch auf eine Vergütung für den Strom, der ins Stromnetz eingespeist worden ist. Die Art der Vergütung basiert auf dem Vermarktungsmodell und ist von der installierten Leistung der PV-Anlage und dem Inbetriebnahmedatum der PV-Anlage abhängig. Eine Übersicht über die Vergütungen ist in Tabelle 2 dargestellt.

Tabelle 2: Vergütungsmodelle aus dem Referentenentwurf des EEG 2023

Vermarktungsmodell	Eigenverbrauch möglich	Anlagengrenzen	Vergütungshöhe
EEG-Vergütung	Ja	Bis 100 kWp	5,56 - 12,5 ct/kWh
Marktprämie	Ja	Bis 1.000 kWp	5,4 - 10,5 ct/kWh
Ausschreibung	nein	Bis 20.000 kWp	5,0 - 6,8 ct/kWh
Sonstige Direktvermarktung	Ja	Unbegrenzt	Börsenstrompreis

2.2.1 Auf-Dach-Potenzialanalyse

Sowohl bei dem Vermarktungsmodell EEG-Vergütung als auch Marktprämie kann der erzeugte Strom bedarfsgemäß selbst verbraucht werden. Eigenerzeugte Strom, der zu einem Zeitpunkt selbst nicht verbraucht wird, wird in das öffentliche Netz eingespeist. Da der Anlagenbetreiber die Vergütung nur für den ins öffentliche Stromnetz eingespeisten Strom erhält, besteht hier der große wirtschaftliche Vorteil in der Einsparung hinsichtlich des teuren Strombezugs von außen. Dieses Modell wird als Überschusseinspeisung bezeichnet. Im Gegensatz dazu kann auch der gesamte selbst erzeugte Strom in das öffentliche Stromnetz eingespeist werden. Der Strombezug bleibt in diesem Fall sowohl mit PV-Anlage als auch ohne PV-Anlage gleich hoch. Dafür werden höhere Vergütungssätze gewährt. Dieses Modell wird als Volleinspeisung bezeichnet und ist erst mit dem neuen EEG-Referentenentwurf 2023 aus dem Jahr 2022 möglich.

Damit stellt das Vermarktungsmodell ein wesentliches Kriterium für die Wirtschaftlichkeit einer PV-Anlage dar.

2.2.2 Freiflächen-Potenzialanalyse

PV-Freiflächenanlagen speisen i.d.R. den gesamten Strom ein, sog. Volleinspeisung. Handelt es sich bei den Flächen um sog. Konversionsflächen oder benachteiligte Gebiete, kann das Modell der Marktprämie oder Ausschreibung gewählt werden. Ist dies nicht der Fall, ist i.d.R. das Modell der sonstigen Direktvermarktung zu wählen.

Konversionsflächen sind diejenigen Flächen, die sich innerhalb eines 200 m Korridors entlang von Autobahnen oder Bahnstrecken befinden.

Benachteiligte Gebiete sind solche Flächen, die eine hohe Hangneigung oder schlechte Bodenqualität aufweisen und daher bspw. schlecht für Landwirtschaft genutzt werden können. Die benachteiligten Flächen werden vom Land ausgewiesen.

Für diese Gebieten können Restriktionen vorliegen, die den Bau von PV-Anlagen einschränken. Dabei kann es sich um harte Restriktionen, wie Gewässer, Ortslageflächen, Wald und Forstflächen, Nationalpark, Biotope, Biosphärengebiete (Kernzonen) und Wasserschutzgebiete - Zone I handeln. Diese sind sog. Ausschlusskriterien, d.h. in diesen Gebieten ist der Bau einer PV-Anlage nicht möglich. Daneben gibt es auch weiche Restriktionen, wie Biotopverbund, Natura 2000-Gebiete, Biosphärengebiete (Entwicklungszonen, Pflegezonen), Wasserschutzgebiete - Zone II und Landschaftsschutzgebiete. Diese können zu Einschränkungen führen und im Planungsprozess zu überprüfen sind.

Das Modell der Marktprämie ist nur für Anlagen bis zu einer Größe von 20 MW_p möglich. Dabei ist ein Direktvermarkter notwendig. Dieser fungiert als Stromhändler wie die EnBW. Der Stromhändler verkauft den Strom aus der PV-Anlage an der Strombörse und erhält dafür den jeweiligen Börsenstrompreis. Liegt dieser unter der fest definierten Marktprämie, erhält der Anlagenbetreiber einen Zuschlag. Dieser wird individuell so hoch festgelegt, dass die Summe aus Zuschlag und erhaltenem Börsenstrompreis so hoch ist wie die fest definierte Marktprämie. Ist der Börsenstrompreis gleich oder höher als die Marktprämie, erhält man keinen Zuschlag. Das Modell der Marktprämie stellt somit eine Risikoabsicherung dar, da der geldwerte Ertrag immer mindestens der Marktprämie entspricht.

Ähnlich stellt sich das Vergütungsmodell der Ausschreibung dar. Der Unterschied zum Modell der Marktprämie ist, dass es keinen gesetzlich festgelegten Mindest-Vergütungssatz gibt. Stattdessen ist im Zuge des Ausschreibungsverfahrens ein individueller Mindest-Vergütungssatz anzugeben. Liegt der Börsenstrompreis darunter, erhält man den Mindest-Vergütungssatz, für den man den Zuschlag im Rahmen der Ausschreibung erhalten hat. Die Anbieter mit dem geringsten Mindest-Vergütungssatz bekommen im Rahmen der Ausschreibung den Zuschlag und können die PV-Freiflächenanlage bauen.

In der sonstigen Direktvermarktung wird der PV-Strom direkt an der Börse zum jeweiligen Börsenstrompreis verkauft. Im Gegensatz zum Modell der Marktprämie gibt es keine Risikoabsicherung, die Vergütung entspricht in jedem Fall genau dem Börsenstrompreis. Dem gegenüber steht der Vorteil, dass es keine Begrenzung der Baugebiete gibt. Sie können auch außerhalb von Konversionsflächen und benachteiligter Gebiete gebaut werden. Auch die Anlagengröße ist unerheblich. Dies ist insofern relevant, als dass die spezifischen Kosten mit der Größe einer PV-Anlage abnehmen.

2.3 Sonstiges

2.3.1 Geoinformationssystem

Als Geoinformationssystem wurde, wie mit dem Kunden vereinbart, Google Maps verwendet. Die AutenSys GmbH übernimmt keinerlei Verantwortung oder Haftung o.ä. im Zusammenhang mit Google Maps. In diesem Zusammenhang sind 1) die Nutzungsbedingungen von Google und 2) diese zusätzlichen Nutzungsbedingungen für Google Maps/Google Earth ("zusätzliche Nutzungsbedingungen") zu beachten. Die rechtlichen Hinweise für Google Maps/Google Earth und die Google Maps/Google Earth APIs sind durch Verweis in die zusätzlichen Nutzungsbedingungen einbezogen. Die Datenschutzerklärung von Google Maps ist nicht Teil deren Nutzungsbedingungen. Dennoch empfehlen wir, sie zu lesen, um zu erfahren, wie Sie Ihre Daten aktualisieren, verwalten, exportieren und löschen können. Für kommunale oder föderale bzw. bundesstaatliche Einrichtungen in den

Vereinigten Staaten und der Europäischen Union kommt der Abschnitt in den Nutzungsbedingungen von Google, der das geltende Recht und den Gerichtsstand betrifft, nicht zur Anwendung.

2.3.2 Kostenentwicklung

Die aktuellen politischen Diskussionen bzgl. des Klimawandels lassen erahnen, dass in den nächsten Jahren und Jahrzehnten fossile Energieträger (wie z. B. Heizöl und Erdgas) durch hohe Steuern und Abgaben vom Markt verdrängt werden sollen. So wurde bereits eine CO₂-Abgabe eingeführt. Die weitere Entwicklung ist nicht bekannt. Es lässt sich aber mit einer hohen Wahrscheinlichkeit voraussagen, dass fossile Energieträger in Zukunft immer unattraktiver werden. Damit nimmt die Attraktivität nach klimaneutralen Stromerzeugern wie PV-Anlagen zu. Durch die damit steigende Nachfrage steigen wahrscheinlich die Kosten. Außerdem möchten wir darauf hinweisen, dass sich die gesetzlichen Rahmenbedingungen und ebenso die Förderlandschaft über Monate und Jahre ändern. Durch Rohstoff-Engpässe oder bei hoher Nachfrage können die Kosten für Leistungen und Material über wenige Monate stark ansteigen. Die Auswirkungen können regional sehr unterschiedlich ausfallen.

2.3.3 Gesetzliche Entwicklungen

Der Bericht wurde von uns mit bestem Wissen und Gewissen angefertigt. Im Sommer 2022 wird aller Voraussicht nach das novellierte EEG 2023 beschlossen. Die Novellierung wird die Wirtschaftlichkeit von PV-Anlagen nachhaltig beeinflussen. Daher wurde für die Analysen der aktuelle EEG-Referentenentwurf (Stand 28.2.2022) als Grundlage verwendet. Im Vergleich zur endgültigen Verabschiedung kann es noch zu Änderungen kommen. Diese werden aller Voraussicht nach einem geringen Einfluss auf die Wirtschaftlichkeit haben.

2.3.4 Genauigkeit

Die PV-Potenzialkarten wurden von uns mit bestem Wissen und Gewissen angefertigt. Die von uns verwenden Geodatensätze, wie z.B. ALKIS unterliegen Ungenauigkeiten. Diese entstehen durch ungenaue Positionierung sowie unvollständige Abbildung der Landnutzungskategorien (z.B. Straßenklassen) oder dass die Geodatensätze nicht ganz aktuell sind. Dies kann dazu führen, dass vereinzelte Flächen in den PV-Potenzialkarten nicht ganz korrekt räumlich dargestellt oder kategorisiert werden.

3. PHOTOVOLTAIK-POTENZIAL

Bevor auf die Ergebnisse der Potenzialanalyse eingegangen wird, werden die anzulegenden Bewertungskriterien erläutert. Allgemein sind für den Ertrag von PV-Anlagen die Leistung, Wirkungsgrad, Ausrichtung, Neigung, Verschattung u.ä. relevant.

3.1 Bewertungskriterien

3.1.1 Auf-Dach-Potenzialanalyse

Bevor eine detaillierte Wirtschaftlichkeit von PV-Anlagen ermittelt werden kann, ist eine Ermittlung des möglichen Ertrags notwendig. Dieser wird durch die Art, Neigung und Ausrichtung beeinflusst. Daneben schränken vorhandene Dachaufbauten die mögliche Dachbelegung ein und können Verschattungen verursachen. Letztere können auch durch umliegende Gebäude, Bäume oder ähnliches entstehen. Sie reduzieren den Ertrag.

Aus diesem Ertrag an Strom wird die Vergütung ein geldwerter Ertrag generiert, die der Anlagenbetreiber gemäß dem gewählten Vermarktungsmodell für den in das öffentliche Stromnetz eingespeisten Strom erhält. Andererseits sind im Falle des Modells der Überschusseinspeisung auch die eingesparten Kosten des externen Strombezugs als Ertrag zu sehen. Vor allem bei hohen Strombezugskosten trägt dies einen großen Teil zur Wirtschaftlichkeit bei und senkt über die Lebensdauer der PV-Anlage die Stromkosten. Deshalb wurde die Höhe des Stromverbrauchs als ein Kriterium angenommen.

Zusätzlich zu den wirtschaftlichen Vorteilen erhöht eine PV-Anlage bei dem Modell der Überschusseinspeisung den Autarkiegrad und damit die Unabhängigkeit. Denn es wird selbst erzeugter Strom verbraucht. Dieser muss nicht eingekauft werden, wodurch geringere Abhängigkeiten und Planungsrisiken bestehen. Darüber hinaus gilt Strom aus PV-Anlagen als klimaneutral. Er verbessert damit die eigene Klimabilanz und leistet einen konkreten Beitrag zum Klimaschutz. Denn jede Kilowattstunde Strom aus fossilen Energieträgern, die durch klimaneutrale Erzeugung ersetzt werden kann, leistet einen positiven Beitrag zur Erreichung der Klimaziele. Diese Kriterien wurden gemäß der angebotenen Leistungen nicht berücksichtigt.

Damit wurden folgende Kriterien für die einzelnen Liegenschaften bewertet:

- ✓ Höhe des Stromverbrauchs,
- ✓ Art des Daches,
- ✓ Neigung des Daches,
- ✓ Ausrichtung des Daches,
- ✓ Vorhandene Dachaufbauten und
- ✓ Verschattungen.

Alle Kriterien zusammen mit den ermittelten Erträgen haben dann eine Bewertung gemäß eines Ampelsystems ergeben. Dabei entspricht grün einer Empfehlung für den Bau einer PV-Anlage, gelb weißt auf eine schwierigere Entscheidung hin und bei rot bewerteten Liegenschaften rät die Auten-Sys GmbH vom Bau einer Auf-Dach-PV-Anlage ab.

3.1.2 Freiflächen-Potenzialanalyse

Für die Bewertung des Freiflächen-Potenzials ist entscheidend, ob eine Vergütung innerhalb des EEG möglich ist. Denn diese ist aus wirtschaftlicher Sicht deutlich attraktiver. Hierfür ist wie bereits in Kap. 2.2.2 beschrieben entscheidend, ob es sich um eine Konversionsfläche oder um ein benachteiligtes Gebiet handelt. Darüber hinaus wurde die Qualität der Ackerböden berücksichtigt, damit hochwertige Ackerflächen nicht der Landwirtschaft entzogen werden. Deshalb kommen nur Flächen der Vorrangflur 2 in Betracht.

Hinzu kommt, dass ein Bau einer PV-Anlage nicht durch andere Gesetze eingeschränkt wird. Diese sog. Harten und weichen Restriktionen sind deshalb ebenfalls wichtige Kriterien. Damit ergeben sich die folgenden Kriterien:

- ✓ Konversionsfläche oder benachteiligtes Gebiet,
- ✓ Bestehen harter oder weicher Restriktionen und
- ✓ Mögliche Anlagenleistung

Idealerweise handelt es sich um eine möglichst große Konversionsfläche ohne Restriktionen.

Da alle potenziellen Flächen in Edingen-Neckarhausen gute Landwirtschaftliche Flächen sind, ist von einem Flächenkonflikt mit Landwirten auszugehen. Dieser Flächenkonflikt wurde nicht berücksichtigt, da es allein um das mögliche Potenzial an den Standorten geht.

3.2 Ergebnis

Sowohl bei den Auf-Dach-Anlagen der kommunalen Liegenschaften als auch bei den Flächen für Freiflächen-Anlagen gibt es Standorte, für eine Empfehlung für den Bau einer PV-Anlage ausgesprochen werden kann. Gleichzeitig gibt es Standorte, für die keine Empfehlung ausgesprochen wird.

3.2.1 Auf-Dach-Potenzial

Eine Zusammenfassung der Ergebnisse bietet Tabelle 3. In Summe wären damit jährliche Erträge von 791.000 kWh möglich. Einen Steckbrief zu jedem Standort findet sich im Anhang mit einer PV-Belegung und einem Fazit.

Tabelle 3: Ergebnisse der PV-Potenzialanalyse

Name / Adresse	Leistung	Jahresstrom- erzeugung	Bewertung
Freizeitbad	210 kWp	190.000 kWh	0
Pestalozzi-Schule	180 kWp	160.000 kWh	0
Graf-von-Obendorf-Schule	80 kWp	65.000 kWh	0
Rathaus-Str. 12	28 kWp	26.000 kWh	0
Rathaus	17 kWp	16.000 kWh	0
Rathaus-Str. 5	10 kWp	9.000 kWh	0
Bauhof (Grenzhöfer-Str. 95)	190 kWp	138.000 kWh	•
Sporthaus	65 kWp	55.000 kWh	•

SUMME	908 kW _p	791.000 kWh	
Wohnhaus Hauptstr. 41	4 kWp	4.000 kWh	U
Seckenheimer-Str. 2A	5 kWp	5.000 kWh	O
Aufenthaltsraum (Am Schloßpark)	6 kWp	4.000 kWh	O
Leichenhalle (Speyerer Str. 5)	8 kWp	8.000 kWh	O
Leichenhalle (Friedhofsweg 17)	30 kWp	22.000 kWh	O
Begungsstätte (Fichtenstr. 13)	11 kWp	8.000 kWh	-
Seckenheimer-Str. 2B	13 kWp	11.000 kWh	-
Anna-Bender-Str. 12	14 kWp	10.000 kWh	•
Feuerwehr	37 kWp	30.000 kWh	-

3.2.2 Freiflächen-Potenzial

Zusammengefasst lässt sich sagen, dass Edingen-Neckarhausen ein guter Standort für PV ist. Denn die Globalstrahlung liegt mit ca. 1.110 kWh/m² über dem deutschen Durchschnitt. Diese ist ein Maß für die Strahlungsenergie der Sonne, die auf einem Quadratmeter ankommt.

In Abbildung 1: PV-Freiflächenpotenzial Abbildung 2: PV-Freiflächenpotenzial auf ist das gesamte theoretische PV-Freiflächenpotenzial für Freiflächen, die in das EEG 2021 fallen, in einer Karte dargestellt. Auf diesen Flächen können PV-Freiflächenanlagen gebaut werden, die im Marktprämienmodell realisiert werden oder an einer Ausschreibung teilnehmen können. In Abbildung 2 ist das PV-Freiflächenpotenzial für alle Freiflächen, die im Eigentum der öffentlichen Hand sind, dargestellt. Flächen die hier nicht grün oder gelb markiert sind, können nicht innerhalb des EEG 2021 realisiert werden und daher höchstens in der sonstigen Direktvermarktung betrieben werden. Allerdings sind hierfür die Hürden hoch, weswegen die AutenSys GmbH empfiehlt, sich auf die Flächen, die innerhalb des EEG 2021 realisiert werden können, zu fokussieren. Dabei sind die farblichen Kennzeichnungen, wie in Tabelle 4 folgt, zu verstehen.

Detaillierte Informationen zu den einzelnen Flächen wurde in zwei interaktiven Online-Karten abgelegt. Die Online-Karte zu den PV-Freiflächenpotenzialen innerhalb des EEG 2021 finden Sie unter folgendem <u>Link</u>. Die interaktive Online-Karte zu den Flächen im Eigentum der öffentlichen Hand ist unter folgendem <u>Link</u> zu finden.

Tabelle 4: Legende für Abbildung 1

Farbe	Bedeutung
Grüne Flächen	EEG-Flächen ohne Restriktionen
Gelbe Flächen	EEG-Flächen mit weichen Restriktionen
Blaue Flächen	Landwirtschaftliche Flächen im Eigentum der Kommune / ohne Restriktionen
Orange Flächen	Landwirtschaftliche Flächen im Eigentum der Kommune / mit weichen Restriktionen

Abbildung 1: PV-Freiflächenpotenzial innerhalb des EEG 2021

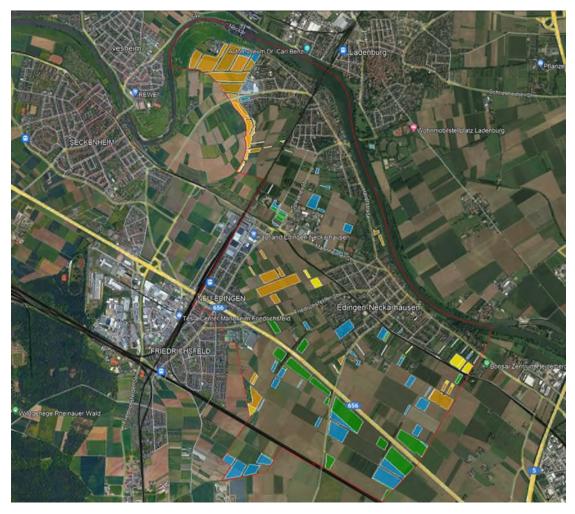


Abbildung 2: PV-Freiflächenpotenzial auf Flächen im Eigentum der öffentlichen Hand

In Tabelle 5 ist das theoretische PV-Potenzial für Flächen innerhalb des EEG 2021 dargestellt. Theoretisch können auf Flächen innerhalb der Gemarkung der Kommune, die keine Restriktionen haben, insgesamt 112 MW installiert und damit jährlich bis zu circa 15.000 MWh erzeugt werden. In Tabelle 6 ist das theoretische Potenzial für die Flächen, die im Eigentum der öffentlichen Hand sind, dargestellt. Insgesamt können circa 30 MW auf Flächen ohne Restriktionen und die innerhalb des EEG 2021 liegen installiert werden. Flächen mit weichen Restriktionen müssen im Einzelfall geprüft werden.

Tabelle 5:Gesamtes Potenzial der Flächen innerhalb des EEG 2021

Fläche	Ohne Restriktionen		Mit weichen Res	triktionen
	Leistung [MW] Ertrag [MWh]		Leistung [MW]	Ertrag [MWh]
Straßenbahn	15,6	15.954	30,4	30.967
Autobahn u. Bahnstrecke	97,0	98.928	17,6	17.991

Tabelle 6: Potenzial der Flächen im Eigentum der Kommune.

Fläche	Ohne Restriktionen		Ohne Restriktionen Mit weichen Restriktionen		triktionen
	Leistung [MW] Ertrag [MWh] L		Leistung [MW]	Ertrag [MWh]	
Straßenbahn	2,2	2.246	4,6	4.660	
Autobahn u. Bahnstrecke	28,83	29.412	1	1.031	
Landwirtschaftliche Flächen	38,4	39.182	53,2	54.313	

Die attraktivsten Flächen zeichnen sich dadurch aus, dass eine Konversionsfläche vorliegt oder Flächen, die sich im Besitz der Kommune bzw. des Landes Baden-Württemberg befinden. Dieses theoretische Potenzial lässt sich in der Praxis aufgrund teilweiser Restriktionen nicht vollständig ausnutzen.

Die interessantesten Flächen mit dem höchsten Potenzial sind in Abbildung 3 und 4 zu finden. Abbildung 3 stellt PV-Potenzialflächen entlang der A646 dar. Abbildung 4 bildet die Flächen im Eigentum der öffentlichen Hand ab.

Abbildung 3 und 4: Flächen mit dem höchsten Potenzial

Bis auf ein kleines Flurstück gehört der öffentlichen Hand die Flächen zwischen der Grenzhöfer Sträße und dem östlichen Ende des Kommunengebietes. Auf den Flächen südlich der A656 können circa 16,5 MW installiert werden. Eine solche Anlage erzeugt etwa 16.830 MWh. Mit einem durchschnittlichen Verbrauch von ca. 3.500 kWh pro Jahr pro Haushalt, erzeugt diese PV-Anlage bilanziell den Strom von 4.800 Haushalten. Wir empfehlen deshalb die Flurstücke, die nicht im Eigentum der Kommune sind, zu erwerben und auf der gesamten Fläche eine PV-Freiflächenanlage zu installieren. Mögliche Flächenkonflikte mit Landwirten oder andere politischen Konflikte sind nicht Gegenstand dieser Empfehlung. Die Empfehlung basiert auf reiner energiewirtschaftlichen Sicht.

4. ANHANG

4.1 Auf-Dach-Potenziale

4.1.1 Graf-von-Obendorf-Schule

Standortdaten						
	Straße und Hausnummer	-	Schulstraße 6			
	Postleitzahl und Ort	-	68535			
	Stromverbrauch	kWh/a	325.000			

Anlagenkennzahlen			
* <u>-</u> ==	Größe (geschätzt)	Modulzahl	210
	Leistung (geschätzt)	kWp	80
	Ertrag (geschätzt)	kWh/a	65.000

Seite 17 von 40

Fazit

Der Standort eignet sich gut für den Bau einer PV-Anlage, aufgrund des hohen Stromverbrauches. Geringe Verschattungen durch die umliegenden Bäume sind zu erwarten.

Standortdaten			
	Straße und Hausnummer	-	Robert-Walter-Str. 3
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	145.650

Anlagenkennzahlen			
*	Größe (geschätzt)	Modulzahl	470
	Leistung (geschätzt)	kWp	180
	Ertrag (geschätzt)	kWh/a	160.000

Der Standort eignet sich gut für den Bau einer PV-Anlage. Verschattungen durch die umliegenden Bäume sind nicht zu erwarten. Es ist viel Ausbaupotenzial vorhanden, weswegen eine genauere wirtschaftliche Betrachtung empfohlen wird.

4.1.3 Begegnungsstätte

Standortdaten			
	Straße und Hausnummer	_	Fichtenstr. 13
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	3.200

Anlagenkennzahlen			
*	Größe (geschätzt)	Modulzahl	22
	Leistung (geschätzt)	kWp	11
	Ertrag (geschätzt)	kWh/a	8.000

Der Standort eignet sich bedingt für den Bau einer PV-Anlage. Aufgrund der geringen Dachgröße ist mit höheren spezifischen Investitionskosten zu rechnen

4.1.4 Leichenhalle Friedhofweg

Standortdaten			
	Straße und Hausnummer	-	Friedhofweg 17
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	2.800

Anlagenkennzahlen			
\	Größe (geschätzt)	Modulzahl	80
	Leistung (geschätzt)	kWp	30
	Ertrag (geschätzt)	kWh/a	22.000

Der Standort ist für den Bau einer PV-Anlage eher ungeeignet. Die Bäume in Hausnähe führen zu starken Verschattungen über den Tag, was den Ertrag deutlich mindern würde. Aufgrund des geringen Stromverbrauches empfehlen wir auf eine Belegung der Nordseite zu verzichten.

4.1.5 Feuerwehr

Standortdaten			
	Straße und Hausnummer	-	Gartenstraße 12
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	14.050

Anlagenkennzahlen			
*	Größe (geschätzt)	Modulzahl	105
	Leistung (geschätzt)	kWp	37
	Ertrag (geschätzt)	kWh/a	30.000

Der Standort ist für den Bau einer PV-Anlage bedingt geeignet. Ob der Baum im Südwesten zu Verschattung führt, muss vor Ort begutachtet werden. Eine Belegung der Nordseite wird nicht empfohlen.

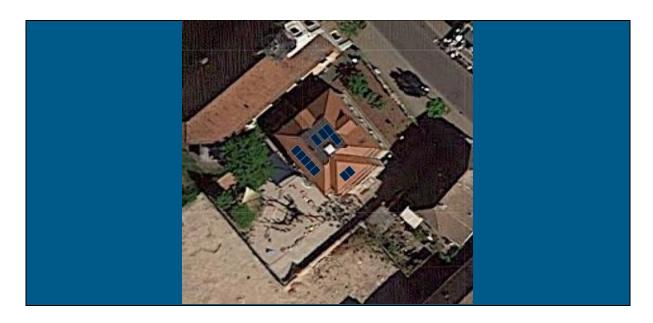
4.1.6 Bauhof

Standortdaten			
	Straße und Hausnummer	-	Grenzhöferstraße 95
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	33.000

Anlagenkennzahlen			
***************************************	Größe (geschätzt)	Modulzahl	515
	Leistung (geschätzt)	kWp	190
	Ertrag (geschätzt)	kWh/a	138.000

Der Standort ist für den Bau einer PV-Anlage bedingt geeignet. Eine Ausrichtung der Module nach Norden liefert geringere Erträge und ist nicht zu empfehlen. Eine Süd- und Ost- Ausrichtung auf dem Lager ist sinnvoll.

4.1.7 Freizeitbad


Standortdaten			
	Straße und Hausnummer	-	Hauptstraße 356
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	1.750

Anlagenkennzahlen			
***************************************	Größe (geschätzt)	Modulzahl	570
	Leistung (geschätzt)	kWp	210
<u> </u>	Ertrag (geschätzt)	kWh/a	190.000

Der Standort eignet sich gut für den Bau einer PV-Anlage. Durch den geringen Strombedarf muss der Großteil ins Netz eingespeist werden. Eine PV-Anlage mit Volleinspeisung könnte aufgrund ihrer Größe interessant sein.

4.1.8 Wohnhaus Hauptstr. 41

Standortdaten		
Straße und Hausnummer	-	Hauptstraße 41
Postleitzahl und Ort	-	68535
Stromverbrauch	kWh/a	800

Anlagenkennzahlen			
×	Größe (geschätzt)	Modulzahl	11
	Leistung (geschätzt)	kWp	4
<u> </u>	Ertrag (geschätzt)	kWh/a	4.000

Fazit
Aufgrund des geringen Verbrauches und der komplizierten Dachform ist eine Belegung
mit PV-Modulen nicht zu empfehlen.

4.1.9 Rathaus

Standortdaten		
Straße und Hausnummer	-	Hauptstraße 60
Postleitzahl und Ort	-	68535
Stromverbrauch	kWh/a	75.500

Anlagenkennzahlen			
*	Größe (geschätzt)	Modulzahl	45
	Leistung (geschätzt)	kWp	17
	Ertrag (geschätzt)	kWh/a	16.000

Der Standort eignet sich gut für den Bau einer PV-Anlage. Ein hoher Eigenverbrauch des PV-Stromes ist zu erwarten, was zu einer hohen Wirtschaftlichkeit der PV-Anlage führt.

4.1.10 Sporthaus

Standortdaten			
	Straße und Hausnummer	-	Mannheimer Str. 50
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	8.450

Anlagenkennzahlen			
` \	Größe (geschätzt)	Modulzahl	170
	Leistung (geschätzt)	kWp	65
	Ertrag (geschätzt)	kWh/a	55.000

Der Standort eignet sich bedingt für den Bau einer PV-Anlage. Aufgrund des geringen Stromverbrauches ist eine Belegung der Nordwestseite mit Modulen nicht zu empfehlen.

4.1.11 Gebäude Verwaltung Schule

Standortdaten			
	Straße und Hausnummer	-	Rathaus Str. 12
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	12.350

Anlagenkennzahlen			
<u>*</u>	Größe (geschätzt)	Modulzahl	75
	Leistung (geschätzt)	kWp	28
	Ertrag (geschätzt)	kWh/a	26.000

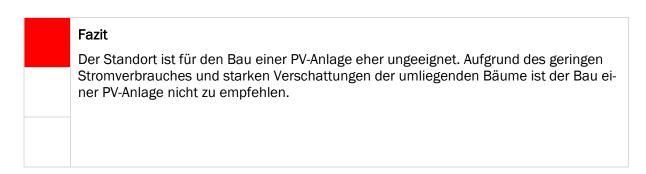
Der Standort eignet sich gut für den Bau einer PV-Anlage. Der angrenzende Baum könnte gegen Nachmittag zu Verschattung führen. Eventuell kann ein Stutzen der Bäume in Betracht gezogen werden.

4.1.12 Wohnhaus Rathaus Str. 5

Standortdaten			
	Straße und Hausnummer	-	Rathaus Str. 5
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	3.700

Anlagenkennzahlen			
`	Größe (geschätzt)	Modulzahl	25
	Leistung (geschätzt)	kWp	10
	Ertrag (geschätzt)	kWh/a	9.000

Fazit Der Standort eignet sich gut für den Bau einer PV-Anlage.



4.1.13 Wohnhaus Seckenheimer Str. 2A

Standortdaten			
	Straße und Hausnummer	-	Seckenheimer Str. 2A
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	97

Anlagenkennzahlen			
×	Größe (geschätzt)	Modulzahl	14
	Leistung (geschätzt)	kWp	5
	Ertrag (geschätzt)	kWh/a	5.000

4.1.14 Wohnhaus Seckenheimer Str. 2b

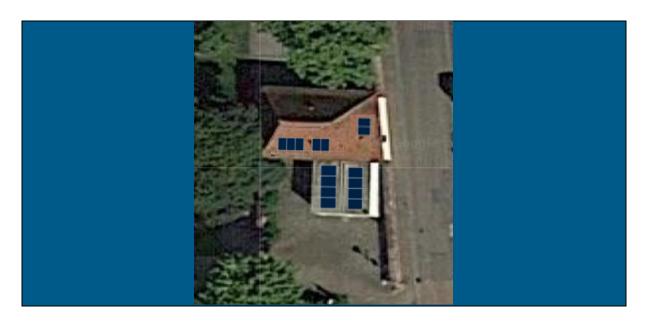
Standortdaten			
	Straße und Hausnummer	-	Seckenheimer Str. 2B
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	100

Anlagenkennzahlen			
***************************************	Größe (geschätzt)	Modulzahl	35
	Leistung (geschätzt)	kWp	13
	Ertrag (geschätzt)	kWh/a	11.000

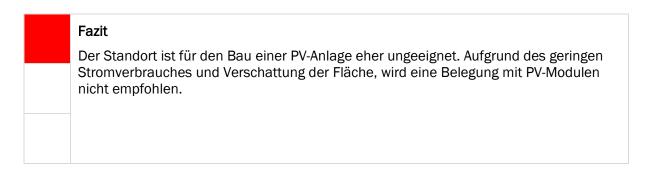
Fazit Der Standort eignet sich bedingt für den Bau einer PV-Anlage. Wegen des geringen Stromverbrauches kann eine Volleinspeisung interessant sein.



4.1.15 Leichenhalle Speyerer Str.


Standortdaten			
	Straße und Hausnummer	-	Speyerer Str. 5
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	4.500

Anlagenkennzahlen			
*	Größe (geschätzt)	Modulzahl	25
	Leistung (geschätzt)	kWp	8
	Ertrag (geschätzt)	kWh/a	8.000



4.1.16 Aufenthaltsraum

Standortdaten			
	Straße und Hausnummer	-	Am Schloßpark
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	4.700

Anlagenkennzahlen			
***************************************	Größe (geschätzt)	Modulzahl	17
	Leistung (geschätzt)	kWp	6
	Ertrag (geschätzt)	kWh/a	4.000

4.1.17 Wohnhaus Anna-Bender-Str.

Standortdaten			
	Straße und Hausnummer	-	Anna-Bender-Str. 12
	Postleitzahl und Ort	-	68535
	Stromverbrauch	kWh/a	1.200

Anlagenkennzahlen			
***************************************	Größe (geschätzt)	Modulzahl	35
	Leistung (geschätzt)	kWp	14
	Ertrag (geschätzt)	kWh/a	10.000

Fazit

Der Standort ist für den Bau einer PV-Anlage bedingt geeignet. Durch den geringen Stromverbrauch wird von einer Belegung der Nordwestseite abgeraten.

4.2 Freiflächen-Potenziale

4.2.1 Im Eigentum von Edingen-Neckarhausen, innerhalb des EEG, ohne Restriktionen

Die Flächen im Eigentum der Kommune Edingen-Neckarhausen, die im Rahmen des EEG mit Photovoltaik bebaut werden könnten und keine Restriktionen aufweisen, sind in Abb. 5 grün markiert.

Abbildung 5 – Flächen im Eigentum von Edingen-Neckarhausen, im Rahmen des EEG, ohne Restriktionen

4.2.2 Im Eigentum von Edingen-Neckarhausen, innerhalb des EEG, mit Restriktionen

Die Flächen im Eigentum der Kommune Edingen-Neckarhausen, die im Rahmen des EEG mit Photovoltaik bebaut werden könnten und weiche Restriktionen aufweisen, sind in Abb. 6 gelb markiert.

Abbildung 6 – Flächen im Eigentum von Edingen-Neckarhausen, im Rahmen des EEG, weiche Restriktionen

4.2.3 Im Eigentum von Edingen-Neckarhausen, außerhalb des EEG, ohne Restriktionen

Die Flächen im Eigentum der Kommune Edingen-Neckarhausen, die außerhalb des EEG mit Photovoltaik bebaut werden könnten und keine Restriktionen aufweisen, sind in Abb. 7 blau markiert.

Abbildung 7 – Flächen im Eigentum von Edingen-Neckarhausen, außerhalb des EEG, ohne Restriktionen

4.2.4 Im Eigentum von Edingen-Neckarhausen, außerhalb des EEG, mit Restriktionen

Die Flächen im Eigentum der Kommune Edingen-Neckarhausen, die im Rahmen des EEG mit Photovoltaik bebaut werden können und weiche Restriktionen aufweisen, sind in Abb. 8 orange markiert.

Abbildung 8 – Flächen im Eigentum von Edingen-Neckarhausen, außerhalb des EEG, weiche Restriktionen

4.2.5 Unabhängig Eigentümerverhältnisse, innerhalb des EEG, ohne Restriktionen

Die Flächen, die unabhängig der Eigentümerverhältnisse im Rahmen des EEG mit Photovoltaik bebaut werden können und weiche Restriktionen aufweisen, sind in Abb. 9 grün markiert. Bestandteil dieser Flächen sind auch die Flächen aus Abb. 5.

Abbildung 9 – Alle Flächen innerhalb des EEG, ohne Restriktionen

4.2.6 Im Eigentum von Edingen-Neckarhausen, innerhalb des EEG, mit Restriktionen

Die Flächen, die unabhängig der Eigentümerverhältnisse im Rahmen des EEG mit Photovoltaik bebaut werden können und weiche Restriktionen aufweisen, sind in Abb. 10 gelb markiert. Bestandteil dieser Flächen sind auch die Flächen aus Abb. 6.

Abbildung 10 – Alle Flächen innerhalb des EEG, mit weichen Restriktionen

Ihr individueller Ansprechpartner

Alain Eicher

M.Sc. • Energieingenieur

Telefon 0160 / 924 017 06

a.eicher@autensys.de

Mai 2022 - Juni 2022

ENERGIE **NEU** DENKEN

Seite 40 von 40